
AD-A268 783

NASA Contractor Report 191478

ICASE Report No. 93-29

ICASE U
FLEXIBLE LANGUAGE CONSTRUCTS FOR LARGE

PARALLEL PROGRAMS

Matthew Rosing
Robert Schnabel D TIC

A&L EECTE

SEP 01o1993

NASA Contract Nos. NAS1-18605, NASI-19480
June 1993

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 2368 1-0001

Operated by the Universities Space Research Association

pproved fot Public'W.
National Aeronautics and

Space Administration
93,.-20338

Langley Research Center
Hampton, Virginia 23681-0001

8 31 o5 8

FLEXIBLE LANGUAGE CONSTRUCTS FOR LARGE
PARALLEL PROGRAMS'

Matt Rosin92 Accesion For

Institute for Computer Applications in Science and Engineering NTIS CRABDTIC TAB
NASA Langley Research Center Unannounced

Hampton, VA 23681 Justification

and
Robert~ Scn blB

Robert Schnabel Dirb ------------------------

Department of Computer Science
University of Colorado, Boulder Availability Codes

Boulder, CO 80309 1 Avail and/or
Dist Special

ABSTRACT

The goal of the research described in this paper is to develop flexible language
constructs for writing large data parallel numerical programs for distributed memory -•

(MIMD) multiprocessors. Previously, several models have been developed to support
synchronization and communication. Models for global synchronization include SIMD
(Single Instruction Multiple Data), SPMD (Single Program Multiple Data), and sequen-
tial programs annotated with data distribution statements. The two primary models
for communication include implicit communication based on shared memory and explicit
communication based on messages. None of these models by themselves seem sufficient
to permit the natural and efficient expression of the variety of algorithms that occur
in large scientific computations. In this paper, we give an overview of a new language
that combines many of these programming models in a clean manner. This is done in a
modular fashion such that different models can be combined to support large programs.
Within a module, the selection of a model depends on the algorithm and its efficiency
requirements. In this paper, we give an overview of the language and discuss some of the
critical implementation details.

'Both authors supported by NSF grant ASC-9015577, NSF grant CDA-8922510 and AFOSR-90-0109
2 This research was supported by the National Aeronautics and Space Administration under NASA

Contract Nos. NAS1-18605 and NASI-19480 while the author was in residence at the Institute for
C(omputer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton,
VA 23681.

1 Introduction. The goal of the research described in this paper is to develop easy-
to-use, efficiently implementable language constructs for writing large data parallel nu-
merical programs for distributed memory (MIMD) multiprocessors. By data parallel
algorithms we mean those where identical or similar operations are performed concur-
rently on different sections of a typically large data structure. Such computations are
typical in many scientific computations, such as computational fluid dynamics algorithms,
although their data parallel structure does not necessarily imply that the algorithms are
SIMD, or that it is easy to parallelize them efficiently (see e.g. [OS92]). Distributed
memory multiprocessors appear to be the main candidates for scalable, high performance
parallel computers. Current examples of distributed memory machines include the Intel
iPSC series of hypercubes and mesh-connected machines, Thinking Machine's CM5, and
networks of workstations used as multiprocessors.

Although distributed memory machines show great promise for high performance
computation, they are currently difficult to program. The difficulty arises from the low
level details the programmer must handle regarding communications, synchronization,
and process control. Raibing the level of these operations from the message level sends
and receives found in many current systems to the point where most of these details are
handled implicitly will make programming distributed memory machines much easier.
However, the efficiency of the resulting code generated from the model must not be
adversely affected or else few programmers will be interested in using the model. For
example, simulating a uniform shared memory will likely be too inefficient.

The research described here attempts to reduce this mismatch between the target
machine, the languages used, and the underlying model of typical data parallel algo-
rithms. A key issue addressed in this research is the development of a language model
that supports the expression of large, modular parallel programs. Such programs may
consist of multiple levels and/or multiple phases of parallelism, and may use different
models of parallelism in different portions of the program. Furthermore, as is typical in
numerical programs, the overall efficiency of the program may depend on the efficiency
of a small portion of the code. Thus, it is important that the user can easily switch
between high level abstract models that are easy to program but may not compile as
efficiently as desired, and low level models that give the user a lot of control over the
hardware. As an example, many programs are fine tuned to make better use of message
passing facilities. Such improvements can easily cut the execution time in half yet such
improvements are only required on a small portion of the code. Thus, it is important
for a language to support multiple models in a clean manner. The expression of such
complex, parallel algorithms has received little consideration so far, with the exception
of Oracle [GHDN90].

The language described here is based in part on many recently developed languages,
including our DINO language [RSW91b], that have been proposed for writing numerical
programs on distributed memory machines. A few of the more relevant include [KMR90],
[FHK+90], [Jor87], [RJ87], [Lit9O], [HJW87], [Tse89], [GHDN90], [CMZ92], [Koe93],
[LG91]. These languages appear to be converging in terms of the underlying parallel
programming model used [RSW91a]. This model is primarily a data parallel one with
a little support for functional parallelism in some cases. It has four main parts. First.
single or miltiple dimensional arrays of virtual processors may be declared in a shape

• •u • m mu • mlln inlnlll mlllln mllllllll ll llllnl lnl•llll I

that best fits the algorithm [RSW91b], [KMR90], [APT90]. Second, single or multiple
dimensiozial arrays of data may be distributed (mapped) across these virtual processors
[RSW91b], [KMR90], [Koe93], [FHK+90]. This distributed data is usually treated
as a single global object and all accesses are made with respect to the global name
space. Third, communications are generated by accessing the distributed objects. The
communications can be implicit, similar to shared memory, or explicit based on sends and
receives. Finally, some model is used for specifying the computation. Here there appear
to be two classes of approaches, either an annotated sequential program approach or all
explicitly parallel approach. In this language, we use the explicitly parallel approach, as
it appears to have greater flexibility in the models it can support on MIMD machines.

Within the explicitly parallel approach, one option is to use a general SPMD (Single
Program Multiple Data) synchronization model. In this method, parallelism is usually
specified at a per-task level, and communication is generally specified with explicit sends
and receives but with the low level details of message typing, buffering, channels and
other aspects handled by the compiler [RSW91b]. A second option is to use an SIMD
(Single Instruction Multiple Data) synchronization model in which virtual processors
effectively synchronize at all communications [QH90]. In this model, parallelism is
generally specified at a fully data parallel level, and all communication is implicitly
generated by the compiler.

Some languages, such as ELP [NSD90] and Modula2* [PTH91], combine some
aspects of both the SIMD and SPMD models. ELP is a language designed specificly to
program the PASM parallel computer [SSK+81], an experimental machine that supports
both SIMD and MIMD computational modes. ELP supports the ability to declare blocks
of code to run in either a SPMD or SIMD mode and can change between the two in a single
instruction, as this is supported in the hardware. Parallelism in Modula2* is specified
using either SIMD or SPMD parallel loops. Modula2* supports virtual processors and
the ability to nest parallel constructs to any depth. ELP does not support this because
the hardware does not. Modula2* does not support any form of synchronization in the
SPMD mode so communications must be done with libraries in this case. ELP supports
a barrier synchronization when all processors write to a mono variable, but, based on the
literature, there is no other form of synchronization in the SPMD mode.

One issue that the languages developed so far do not address is writing very large
programs. This is the main issue addressed in this research. Although most of the
above mentioned languages are suitable for expressing simple algorithms (up to a few
hundred lines), they are less suitable for writing large, modular, multiple-phase parallel
programs. This is partly due to their inability to define and tie together modules that
are independent of the rest of the program.

A large factor that contributes to the inability of expressing large parallel programs
is the restrictiveness of the programming model supported in each of these languages.
Almost every language follows just one of the models described above. Each of these
models has trade offs between ease of use, expressiveness, and efficiency.

For example, if the language follows the explicitly parallel SPMD model, with paral-
lelism specified at a per ta.l: lcvcl, then thcrc arc tvwo ti: 'dc-ffs the user must tace when
writing large programs. First the user usually must explicitly put in synchronization and
communications. Secondly, the explicitly parallel nature of the SPMD model may cause

2

difficulties in efficient compilation if there are many more tasks than physical processors.
When there are more tasks than processors, the compiler and run time system must
emulate a large virtual machine. The overhead in doing this may become prohibitive as
the number of tasks increases. To handle this, the programmer may have to write one
task per physical processor. Although this gives the programmer more control of the
machine, it tends to be more difficult to do.

On the other hand, if the language follows the explicitly parallel SIMD model, with
parallelism specified at a fully data parallel level, then the user has the advantages of
simple synchronization and of being able to efficiently specify large numbers of processes
that match the data parallelism and are independent of the target machine. The SIMD
model provides the compiler with more information than the SPMD model to efficiently
contract many virtual processes into fewer real processes, thus overcoming the constraint
of knowing the number of available processors. But this model is significantly limited in
its expressiveness, due to the lock step execution enforced by the SIMD model, and is
therefore insufficient for expressing many parallel algorithms.

Finally, the sequential model using only distributed data annotations has the advan-
tage that the programmer does not specify any communications or synchronization, and
the disadvantage that it sometimes may be hard to obtain an efficient parallel program
from the sequential specification. First, it is still an open research question to determine
how effectively and broadly one can derive efficient parallel programs from sequential
specifications, using dependency analysis and data distribution annotations. Second,
there are some efficient parallel algorithms, such as pipelined algorithms with non-unit
block sizes, that appear to be especially difficult to express in or derive from a sequential

program.
The tradeoffs between efficiency and ease of use described above are typical decisions

that must be made in developing computationally intensive numerical programs. These
tradeoffs are caused, in part, by the inability of optimizing compilers to generate code
that is as efficient as that of the user. The typical solution to this type of problem is
to use the high level model for the bulk of the computation, where the efficiency is not
that critical and the quality of the optimized code is acceptable, and use a lower level
model for the portion of code where the resulting efficiency is very important. Examples
of this two-model technique include using assembly code in Fortran, using Fortran within
HPF, and using vector statements within Fortran vectorizing compilers. One of the goals
of this research is to support multiple models having various ease of use and efficiency
tradeoffs, and also support an easy transition between the various models.

Another reason for supporting multiple models in a single language is that many
large numerical programs have modules that fit different models. For example, many
kernels of numerical programs are highly structured, fine grained computations that fit
the explicitly parallel SIMD model, while the overall computation structure as well as
selected kernels may be less structured and fit the coarse grained, explicitly parallel

SPMD ,-odcl.
For these reasons, it appears to us that a language for specifying large, modiflar par-

allel numcrical programs needs to support at least two types of models, an SPMD model
for coarse grained parallel computations, and some model that efficiently expresses fine
grained data parallel computations. Such a language should also support both implicit

3

and explicit models of communication. Most importantly, though, it must also provide
an easy method of switching between these models. This is a critical factor in making
the language flexible enough to handle a wide range of programming models and to give
the user control over the machine where a high degree of efficiency is required. These
needs form the main motivation for this research.

The conflict regarding what type of model of computation to use and the ability to
easily switch between models is resolved in the new language by using a modular approach
to designing parallel programs. Each module in this language consists of a virtual parallel
machine. Each virtual machine, representing a kernel or part of an algorithm, may be
written independently based on an ideal virtual parallel machine for that module. This
virtual parallel machine usually is dependent on the size of the data structures being
operated on, and may vary between phases of the program. These modules can then
be combined in a struct~ured framework to support a more complex virtual machine
that may include nesting of parallel modules, combining different modules to execute
concurrently, and changing between parallel modules for different phases of a program.
The task of managing such -a complex virtual machine is performed by the compiler but
can be overwridden by the programmer where necessary.

This paper gives an overview of a new language, called Dino2, that addresses these
issues. Dino2 is a successor to the DINO language [RSW91b], and shares with it the fact
that it is a superset of the C language. The two languages also have similar capabilities
for expressing distributed data and arrays of virtual processors, but their methods for
expressing parallel computations, communications, and synchronization are very differ-
ent.

The remainder of the paper is organized as follows. Section 2 describes the basic con-
cepts of a Dino2 module, and Section 3 describes how modules can be combined to form
large complex programs. Section 4 describes the different synchronization models that
are supported for the modules, while Section 5 describes the language support for these
constructs. Section 6 describes some implementation details for these synchronization
models and for communication. Section 7 offers some brief conclusions. More details of
the language and potential implementation issues are provided in [Ros9l].

2 Virtual Parallel Machines. A Dino2 module is built around a virtual parallel
machine defined by the user. A virtual machine consists of a single virtual processor or
a single or multiple dimensional array of virtual processors, and defines the parallelism
of the module. It is encapsulated in a construct called a composite procedure. The
virtual machine is used as a framework onto which data, communications, and code are
placed. All virtual processors within a composite procedure contain the same code, but
generally, different portions of the distributed data structures. Conceptually, each virtual
processor in a composite procedure executes in parallel when the composite procedure is
invoked. Composite procedures are similar to parallel loops found in other languages but
have important differences that will be described below. However, there is no inherent
reason why parallel loops could not be adapted to have the same semantics as composite
procedures.

Figure 1 is an example program that contains a composite procedure which increments
every element in a matrix by a parameterized amount. Execution starts in procedure

4

#define N 1024
map element() = [block] [block];

synch composite brighten (image, intensity, n) [n:idxl[n:idy]

float remote image[n][In] map elemento; /*distributed array*/
int remote intensity; /*mapped to all virtual processors*/
int n; /*size of virtual machine and array*/
{
image[idx] [idy] += intensity;

}

mainM{
float A[N] [N];

read(A); /*stub procedure*/
brighten (A, 1, N);
display(A); /*stub procedure*/
}

Figure 1. A simple composite procedure

5

main which contains one virtual processor. The call to brighten creates N2 virtual
processors, each of which executes the body of the procedure. The value of N is passed
into the module as a parameter. The actual parameter A is distributed across the new
virtual machine using the mapping function element; this results in each virtual processor
containing one element of the matrix. (Mapping functions in Dino2 are similar to those
originally defined in DINO [RS87], and other languages, such as FortranD, and are not
described in detail in this paper. The basic capability is the mapping of any axis of a
distributed data structure to any axis of a virtual parallel machine, using block, cyclic,
or overlapped mappings.) Within each virtual processor of brighten, the constants idx
and idy denote the indices of that virtual processor in the structure of processors. These
indices are used in the expression image [idx] [idy] to specify the local element of image.
Each element of image is augmented by the value of the variable intensity. At the end
of the call to brighten the N2 virtual processors are terminated and execution continues
on the virtual processor running main.

Implementing data parallelism using composite procedures has similarities and differ-
ences compared with using do loops. It is similar in that both describe the full parallelism
of the algorithm and are independent of the machine. This naturally allows the user to
define one task per data element instead of one per processor and is an important ab-
straction for developing modular, machine independent code.

The differences are equally important in developing numerical programs. The first of
these, locality, is an extremely important issue in developing computationally expensive
programs. This language supports locality by allowing the user to specify how each
composite procedure is mapped to the target machine. This is done using a mechanism
similar to how data is mapped to a virtual machine. The mapping functions supported
include all of those used to map data to virtual machines (block, cyclic, etc) and also
one that dynamically allocates virtual processors to real processors for imbalanced tasks.
This ability to specify where tasks are executed is important for the user to control load
balancing and minimize communication. The location of task execution in many other
languages follows the "owner computes" rule [Koe93] [FHK+90] and is less flexible than
explicitly controlling the placement. Another option used is the on clause, as used in

[KMR90].
Another reason for using composite procedures instead of do loops is that we find

that the composite procedure better encompasses all of the parts related to parallel
computation that must be specified. This includes a set of tasks to be executed and how
these are mapped to the target machine, the synchronization model the tasks will follow,
the data to be operated on and how it is mapped to the tasks, and how the tasks can
communicate with each other. Although this could easily be done using do loops with
the appropriate syntactical changes, we find it easier to place this in a construct like a
procedure where it is possible to use the scoping and parameter mechanisms to change
from one model to another.

The independence between modules supported by composite procedures is important
for isolating synchronization models. Each module executes within either a SIMD or
SPMD synchronization model and the semantics of the synchronization model are inde-
pendent of the procedure that called the module. The module will also not affect the
synchronization model of any modules that it might invoke. This independence supports

6

flexibility and structure when combining modules having widely varying types of commIu-
nication and synchronization techniques. An example where this is used is in a nonlinear
optimization algorithm where the outer algorithm is SIMD but includes a finite difference
gradient evaluation where each virtual processor performs P nonlinear function evalua-
tion independently and asynchronously. Synchronization models are described fully in
Section 4, while methods to combine modules are described in the next section.

Modular independence also supports writing more machine dependent algorithms that
must be efficient. For example, the programmer can choose to specify that there is one
virtual processor per physical processor if this makes it easier to describe the parallel
algorithm. This might be desirable in cases such as some block parallel computations,
where to specify the parallel algorithm correctly one may need to express it in terms of the
actual parallelism of the machine. Specifying one task per physical processor will also be
important where extreme efficiency requirements prohibit the overhead associated with
contracting many virtual processors onto a single processor. Although the contraction
can be done quite well, the compiler will never be able to do it as well as the programmer.
This is discussed more fully in section 6.

3 Combining Modules To Form Complex Parallel Programs. As mentioned
above, there are several types ,f modules in Dino2. These include SIMD composite pro-
cedures, SPMD composite procedures, and normal procedures. From these basic modules,
a more complex parallel program can be created through various combinations of calls
to composite procedures and/or normal procedures. Conceptually, this creates a more
complex parallel virtual machine whose size, shape, and synchronization characteristics
describe the parallel nature of the program. The methods for combining modules are
described in this section.

In the simplest case, a normal procedure can call a SIMD or SPMD composite pro-
cedure. This is the basic mechanism for generating parallelism, and results in changing
the virtual machine from a single p-ocedure into a set of virtual processors, one for
each element of the composite pr'cedure. An example of this was previously shown in
Figure 1.

A similar transformation occurs when one composite procedure calls another. That
is, suppose each element of a composite procedure with n virtual processors calls another
composite procedure with m virtual processors. This is called nested parallelism, and
results in a parallel virtual machine with nm virtual processors. Nested parallelism may
be used to refine parallel operations on complex data structures. A simple example of
this is solving a block diagonal system of equations. At the highest level there is a virtual
machine consisting of a virtual processor for each block. At a finer level there may be a
virtual processor for each row of each block. As in all the combinations, it is permissible
for the two composite procedures to have the same or different synchronization models.

Another combination is called phased parallelism. This occurs when an entire virtual
machine of n elements is replaced by a virtual machine with either a different number of
elements, or a different synchronization model, or both (and then back again). This is
analogous, in a sequential language, to having one procedure call another. In a sequential
language, when one procedure calls another, the calling procedure is temporarily halted
and saved on a stack while the new procedure is executed. In phased parallelism, the

7

entire composite procedure is temporarily halted while the new procedure is called. This
supports structured programming techniques for parallel constructs, much like procedures
support structure in sequential programs.

An example of phased parallelism occurs in solving block bordered systems of equa-
tions, where the natural degree of parallelism changes between the phase of the algorithm
that operates on the diagonal blocks and the phase that operates oil the bottom block.
Another example is in solving a system of linear equations by using a parallel LU de-
composition followed by a pipelined backsolve; here the virtual machine changes from a
SIMD model for the LU phase to a SPMD model for the pipelined backsolve, and the
number of virtual processors may change from the number of equations to the number
of actual processors. Finally, a temporary c' ange in modules may be required to replace
an abstract model with a highly efficient, machine dependent model.

Phased parallelism, li*ke nested parallelism, is implemented in Dino2 by having one
composite procedure call another, but with the second composite procedure call placed
within a "barrier statement". A barrier statement consists of the keyword barrier and a
C compound statement. When executed within the context of a composite procedure, a
barrier synchronizes all the virtual processors associated with the composite procedure
and temporarily replaces them by a single virtual processor that executes the compound
statement. An example of a parallel language that uses a barrier statement in this manner
is the Force [Jor87]. If the statement within the barrier is a call to a composite procedure,
then the net effect is a change in parallelism from that of the original composite procedure
to that of the called composite procedure, and then back again after tie barrier is exited.

A final combination for generating complex virtual machines consists of taking two
virtual machines and combining them into a single virtual machine. This is implemented
with the '::' statement and is similar to a "cobegin". This construct allows for a functional
type of parallelism, as opposed to data parallelism. Generally, when this is used in
numerical computation it is at a high level within a program. For example, functional
parallelism allows a program to operate concurrently on two different data structures.
This construct also can be used to create more irregular parallel programs, such as
programs that use a master/slave model to service a set of independent tasks.

An important aspect in developing efficient programs using these constructs is to
minimize communication when changing the parallelism of the virtual machine. The
virtual machine constructs imply that data will be remapped from one virtual machine
to another when a program moves between modules. However, when implementing the
different forms of parallelism, the compiler will only move data if the mapping to the
physical processors changes. That is, although the data will be moved based on a change
in the virtual machine, due to the mapping of the virtual machine to the physical ma-
chine, there often will be no change in the mapping to the physical machine. Detecting
that the physical mapping does not change is fairly straight forward at composite pro-
cedure boundaries but may be more difficult for statements within a barrier statement,
depending on the mapping of the data used. In the following example, although there
are a number of changes in the virtual machine, the data never needs to be physically
moved.

An example of a numerical algorithm that involves both nested and phased parallelism
is shown in Figure 2. This is a procedure used to solve a block bordered system of linear

8

equations. Such systems, which are common in numerical computation, involve a block
diagonal matrix augmented by a relatively small, possibly dense final set of rows and
colunmns. In our example, we assume there are Q diagonal blocks, each NxN, followed by
bottom and right borders of M possibly dense rows and columns. Thus, the main data
structures consist of the Q NxN diagonal blocks, contained in A, the lo-. - right diagonal
block, which is of size MxM and is represented by P, and the remainders of the row and
column borders, which are of size QNxM and are represented by B and C. The diagonal
blocks in A are distributed so that one block is on each of the Q virtual processors, and
the borders B and C are distributed correspondingly. (This is done using the user-defined
"Slice" mapping, which partitions along the first index.) The final diagonal block P is
distributed by columns using a cyclic mapping.

The first part of the computation consists of lactoring each of the Q diagonal blocks,
contained in A, and making some corresponding calculations involving the border B and
the right hand side f. This implies parallelism of degree Q, the number of diagonal blocks
and of virtual processors in block-solve. Within this procedure, however, two of the
main steps involve each of the Q virtu-I processors themselves calling composite proco-
dures lu and solve, that have paralleiism N, to perform computations on the individual
NXN matrices. This is an example of nested parallelism, and increases the parallelism to
QN during these parts of the computation. After the completion of this portion of the
algorithm, the results are used to modify P (usiig the border blocks), P is factored, and
the final M components of the solution, xqp, are computed. These steps all have paral-
lelism M, and therefore the Q virtual processors used in the remainder of the computation
are temporarily transformed into M virtual processors. This is done using the barrier
statement, and is an example of phased parallelism. (Note that lu and solve are called
with a different number of virtual processors, M, in the second call thai, in the first.)
After the barrier statement, the algorithm returns to a third phase that calculates the
remainder of the solution, x, and reverts to parallelism of degree Q. It agaia involves calls
that use nested parallelism to expand the parallelism to degree QN. WVile this example
may seem complex, it is not artificial; see e.g. [ZBS].

4 Synchronization Models. The other important high-level aspect of describing a
Dino2 module, after specifying the virtual machine that it is based upon, is to describe
how the virtual processors synchronize and communicate with each other There are four
synchronization models that are supported in the language. These include the SIMD and
SPMD models that were mentioned briefly earlier, a chaotic version of the SPMD model
in which there is communication between virtual process - but n, synchronization, and
an independent model in which there is no communication or synchronization between
virtual processors. In this section we describe these four synchroization models. The
syntax of how to build these synchronLation models is desci bed in the next section.

In a purely SIMD model virtual processors would synchronize at every oper. ion.
Two major advantages of this model are that the user does not need to explicitly sp cify
synchronization, and that communication can -asily be made implicit. Therefore, it is
probably the easiest method of programming multiprocessor computers. It is not nec-
essary to use send or receive primitives to transmit data because global synchronization
is specified at every operator, and therefore the distributed data structures, which are
used for communication, can be viewed as shared memory, and the communication can

composite block-solve
(in A, in B, in C, in P, in f, in fqp, out x, out xqp) [Q:id] map Block()
double private A[QN] [IN] map Sliceo; /* Slice distributes data structures */
double private BQ] [N] [MI map Sliceo; /* along their first index */
double private C[Q] [M] [N] map Sliceo;
doub'i÷ private P[M] [M] map WrapCol();
double private f[Q*N] map Blocko;
6obble private fqp[M] map Blocko;
double private x[Q*N] map Blocko;
double private xqp[M];
{
double private p[M] map Wrap()
double private b[M] map Block()

double private sumCW[M] [M] map WrapCol()
double private sumCZ[M] map Blocko;
double private W[Q][N] [M] map Slice(; /* = A--I B*/
double private z[Q*N] map Blocko;
int private i;
double private tempB[NJ;

lu(A[id], p,N); /* nested parallelism QN, Q from blocksolve, N from lu */
solve(A[id], &z[id*N], &f[id*N], p,N); /* z = A--1 f */

/* nested parallelism QN */

for (i=0; i<M; i++) { /*parallelism is Q*/ /* W = A--1 B */
tempB[] = B[id][I [i];
solve(A[id], tempW, tempB, p, N);
W[id] [0 i] = tempW[];}

barrier { /* phased parallelism, each call results in parallelism M */
formsums(C, sumCW, sumCz); /*parallelism is Q*/
sub_vec(P[id], P[id], sumCW[id], M); /* P z-- P - sum CW*/
sub_vec(b, fqp, sumCz,M); /* b = fqp - sum Cz*/
lu(P, p, M); /*factor P*/
solve(P, xqp, b, p, M); /* xqp = P--1 b*/ /*M*/
}

/* x = z - w*xqp */ /*parallelism is Q, parallelism of block-solve*/
for(r=O; r<=N-1; r++){

x[id*N+r] = 0;
for(c=0; c<=M-1; c++)

x[id*N+r] += Wijidi [r] [c]*xqp[c];}
neg-vec(&x[id*N], N); /*nested parallelism QN*./
add-vec(&x[±d*N], &z[id*N], N); /*nested parallelism QN*/}

Figure 2. Block bordered linear equations - nested and phased parallelism

10

be deduced by the compiler and run-time system.
The SIMD model that is used in Dino2 differs from this pure SIMD model in two

important ways and is similar to how other languages imp)lement SIMD oil a MIMD
machine [QHJ87] [PTH91]. Both are the result of the fact that tile language is designed
for, and executed on, an MIMD machine. First, we do not require that the processors
actually synchronize after each operation or even after each communication point, only
that communications are inserted that cause the execution of the module to be consistent
with what it would be using a pure SIMD model. Second, as was mentioned in Section 3,
a call to a standard C function or another module within a SIMD module does not force
the SIMD semantics onto the execution of tfe called function or module. Instead, the
called function or module operates under its own synchronization model which can be
either SIMD, SPMD, or totally independent. This flexibility applies to all calls of Dino2
modules, and is a critical aspect of the language.

The second, more loosely synchronous model that Dino2 supports is tile SPMD model.
In this model, the only specified global synchronization is at the start and end of the
module. It is possible to synchronize at points in between, but in these cases the syn-
chronization is produce-consume synchronization that is added by using communication
constructs based upon distributed data structures, as described in the next section. (As
with all composite procedures, communications also occurs at the start and end of the
module by distributing or collecting the distributed data structures that are used as in-
put or output parameters to the module, respectively.) The SPMD model is particularly
useful for expressing :rregular or coarse grained parallel algorithms. In practice it is of-
ten most naturally used with a virtual machine whose degree of parallelism corresponds
to the actual machine, but sometimes with a virtual parallel machine whose degree of
parallelism corresponds to a main data structure, as in Figure 4.

The third model supported is a SPMD model where there is no synchronization
associated with communication within the body of a module. We call this model "chaotic
SPMD". It differs from the normal SPMD model in what synchronization is implied when
two virtual processors communicate data between them. In the normal SPMD model, a
produce-consume synchronization is implied: the receiving process blocks until a value
arrives. In this manner, messages are consumed in a deterministic order. In the chaotic
SPMD model, the receiving process uses the most recently received value if there is a new
one, and the current value otherwise, and does not block. This model is similar to shared
memory without any synchronization mechanisms, and allows for non-determinism. It
has been used in a variety of chaotic iterative numerical algorithms, and can also be useful
in non-numerical simulation. The SPMD model in Modula2* is a chaotic model [PTH91].

The final model is an independent model where there is no communication or synchro-
nization between processors during their parallel execution. Often this form of execution
is appropriate at low levels of parallel algorithms, as illustrated in Figure 3.

To illustrate how some of these models are used in Dino2, Figure 3 shows a SIMD
procedure calling a normal procedure. This is a shell of a program that computes the
eigenvalues of a matrix A. Much of this algorithm consists of algebra to find tile intervals
containing each eigenvalue. This is best modeled with tile SIMD model. From this point,
an independent computation is used to find each eigenvalue. These computations proceed
independently. This is accomplished using the independent model by calling a normal C
function from each process in the SIMD procedure.

11

double eigenvalue(left, right, A) /* normal C function called by SIMD procedure */
/* results in independent parallel model */

double left, right, A[NJ[N];
{

}

synch composite solvenlintar(A, values)[N:id] /* SIMD Procedure */
double remote AN [N] ;
double remote value[N] map Blocko;
{
double remote left[N], right[N];
/*compute interval*/

/*compute eigenvalues*/

value[id] = eigenvalue(left[id], right[id], A);
}

Figure 3. A SIMD program calling a normal C procedure

5 Language Support for Synchronization and Communication. The synchro-
nization models described above are composed by using one of two different types of
composite proced-res (SIMD or SPMD), and constructs for generating communication
between virtual processors. The composite procedure types define the global synchro-
nization characteristics of a module. A SPMD procedure is declared with the keyword
composite and a SIMD procedure is declared with the keywords synch composite.

Communication between virtual processors is implemented by reading and writing
variables in distributed data structures that have been mapped to the virtual parallel
machine. An important feature of Dino2 is that the semantics of communication is
entirely embedded in the data type of the distributed data structures being read from or
written to. This means that each access to a given distributed data structure has the same
communication semantics. One alternative is to apply special functions or operators to
data structures to generate communications (such as the DINO # operator). This means
that an access to a given element may or may not specify communication, depending
on whether the operator is used. Our experience has been this is confusing and error
prone. A second alternative is to use libraries containing send and receive functions to
.specify communications. These also tend to be difficult to use but more importantly,
by making communication part of tile language, it is possible for the compiler to take
advantage of certain hardware characteristics while implementing tile remote reads anid
writes. Potentially, as will be described ill section 6, this could lead to code that would
run faster than if the programmer used libraries of standard send and(receive proce-dures.

The requirement for flexibility and the requirement that there not be any special

12

Comm type Composite.Proc type

SIMD SPMD
Private only Independent Independent
Remote + Private SIMD Chaotic SPMD
Buffered + Private (illegal) SPMD

Table 1. Synchronization Models in Dino2

operators or functions associated with communications suggest that there be different
types of distributed data that have different semantics with respect to communication. In
response to this we have developed what we call a communication type that is associated
with each data structure. A communication type describes the communication semantics
of a variable. This is similar to data types that are found in all languages and are
associated with every variable. The usual data type describes the semantics of operations
on a variable. For example, the divide operator has different semantics depending on
whether the operands are integers or floats. Similarly, the communication type describes
the semantics of the communications associated with reads and writes of a variable.

A variable in Dino2 may have one of three communication types: private, remote,
or buffered remote (specified by the keywords private, remote, and buffered). Table
1 summarizes how these combine with the two types of composite procedures to form
the synchronization models discussed in Section 4. This is explained in the next three
paragraphs.

Private variables can be used in any procedure (SIMD, SPMD, or normal), and can
only be read or written by the virtual process that contains the variable. That is, no
communication is associated with these variables. When only private variables are used
in a composite procedure, or in a C function called from a composite procedure, the
independent model results.

The role of remote and buffered remote variables varies with the type of procedure
in which the variable is used, although their communication semantics are unchanged.
Within a SIMD composite procedure, only remote (i.e. not buffered remote) variables
can be used. Remote variables can be accessed by any virtual process in the composite
procedure where they are declared and the accesses are non-buffered, meaning that the
value most recently assigned to a variable by any virtual process is used when the variable
is read. In conjunction with the implicit global synchronization semantics specified by the
SIMD composite procedure type, this defines the SIMID synchronization model described
in the previous section.

Within SPMD composite procedures, either remote or buffered remote variables can
be used. Remote variables have the same semantics in SPMD as in SIMD composite
procedures. When used in the context of a SPMD composite procedure, however, these
variables lead to the chaotic SPMD synchronization model discussed in Section 4 be-
cause, in contrast to the SIMD model, there is no global synchronization between virtual
processors. Buffered remote variables are similar to remote variables except that they
have a buffered implementation. That is, all writes to the variable are buffered by each
virtual process that may require them in the order in which they arrive, and reads to the

13

composit e pipe-solve(y,rhs,al,an) [N:id]
private float y[N*N] map wrapo;
private float rhs[N*N] map wrapo;
private float al[N*N] map wrapo; /*the off diagonal*/
private float an[N*N] map wrap(); /*the far off, by N, diagonal*/
{
int i;
buffered float pipe[N] map blocko; /*used to implement pipe*/

for(i=id; i<id+N*(N-1); i+=N)
y[i] = rhs[i];

for(i=id; i<id+N*(N-1); i+=N){
if(id>l) /*if not the first stage in pipe*/

y[i] -= pipe[id]; /*wait for y[i-l]*al[i-l]*/
/*y[i] is now evaluated*/
if(id<N-1) /*if not the last stage in pipe*/

pipe[id+1] = y[i]*al[i]; /*compute value and send to next stage*/
if(i<N*(N-1)) /*if not in last wave*/

y[i+N] -= y[i]*an[i]; /*compute last term for y[i+N]*/
}

Figure 4. A Pipelined Solve - An Example of a SPMD Procedure

variable block until a value is present in the buffer, at which point that value is used and
removed from the buffer. Using buffered remote variables in conjunction with SPMD
composite procedures leads to the SPMD synchronization model described in Section 4.

Figure 4 is an example of an SPMD procedure. This procedure does a pipelined
solve of a linear system of equations involving a banded, lower triangular matrix of the
type that arises in some differential equations algorithms on two dimensional, NxN grids.
The matrix consists of the main diagonal of N2 ones (which are not stored); a diagonal
immediately below the main diagonal of N2-1 elements, stored in al, of which each Nth
element is zero due to the border affects of the grid; and a diagonal N rows below the
main diagonal, with N2 -N elements, stored in an. (The vectors al and an are padded
with 1 and N leading zeroes, respectively, so that their element with index i corresponds
to row i of the matrix.) Due to the zeroes in al, a pipelined type of parallelism can
be used to perform the solve. At step 1, Yo is computed. At step 2, Yj and YN are
computed. At step 3, Y2, YN+l, and Y2N are computed, at step 4, y3, YN+2, Y2N+I, and

Y3N are computed, and so on. These dependencies suggest that N virtual processors
should be used, and the two vectors al and an should be mapped cyclically onto the
virtual machine. Each y, is computed by rhs, -Yi - *al;-1 -Yi-N*aniN. The first and
third terms are computed locally since the processor that contains y, also contains rhs,,
Yi-N, and ani-N. The product Yi-1 * ali-I is received from the neighboring processor by

14

reading pipe[id]. This read will block until the value has arrived because pipe has a
buffered communication type. This product is sent to tLc neighboring processor in the
write to pipe[id+1]. Each variable pipe[i] is used repeatedly to send messages from
processor i-1 to processor i, but the semantics of buffered remote variables assures that
the correct algorithm semantics are enforced. This algorithm is subtle to understand and
perhaps to program, but parallel algorithms like this are important for efficient parallel
numerical computation, and appear to require an SPMD model to express accurately
and efficiently.

In keeping with the goal of supporting modularity for large parallel programs, the
communication type of a variable in Dino2 may be changed in a structured fashion
between modules. A data structure having one communication type may be passed as
a parameter to a procedure where the corresponding formal parameter has a different
communication type. As an example, assume that there is a distributed array of remote
floats declared within the body of a composite procedure, and that it is desirable to
temporarily turn off any communications associated with the data structure. This can
be done by passing the array to a procedure where the formal parameter is a distributed
array of private floats. Note that, as arrays are passed by reference in C, there is no
communication generated from this. Within the body of the new procedure there will
be no communications generated from reads or writes of the data structure. This ability
provides the user with the flexibility to control the communication semantics of a variable,
but in a manner that is structured through the use of scoping and procedure semantics.

The concept of communication types for variables in parallel languages appears to
be a new contribution of this work. Communication types give the user a great deal
of flexibility in selecting the type of communication semantics to use, and also adds
structure to the communications in a program.

6 Implementation. In this section we discuss some of the more interesting implemen-
tation details of compiling Dino2 programs. Although a Dino2 compiler has not been
built, the more critical components have been built in compilers for other languages.
Based on our previous experience with writing the DINO compiler, the areas of compila-
tion that will effect the efficiency of the resulting programs the most include contracting
virtual processors into processes, communication, and the mapping of virtual processors
to the target machine.

The contraction of virtual processors to one process per physical processor is probably
the most crucial aspect of the compilation of Dino2, and must be done for each composite
procedure. The reason that this step is crucial is that the contraction of composite
procedures neads to nearly minimize communications and the overhead of simulating
parallel tasks. On current parallel machines, accomplishing this is a very important
aspect of developing efficient code.

In general, it is expected that there will be more virtual processors than actual pro-
cessors. Furthermore, the number of virtual processors and actual processors will not
be known until run-time. To accomodate these variations, each composite procedure,
on entry, will have to compute a set of integer offsets that are used to describe the vir-
tual processors and data located on each physical processor. These values are then used
within the body of the procedure.

The bulk of the compilation strategy used to compile composite procedures depends

15

on the synchronization model and the type of communications used within the proce-
dure. The compilation of SIMD composite procedures would probably be the hardest
case because of the need to remove unnecessary synchronization points and to vectorize
communication and computation where possible. This work has previously been done,
however, in the C* compiler on the nCUBE [QH.J871 [HQL+91]. The C* compiler first
identifies points of communication and then, based upon this information, transforms the
control constructs of the program so the code executes on a MIMD machine using sends
and receives. From this tram n'rmation, several optimizations are performed to improve
the efficiency of the communications. These include moving sends as far forward as pos-
sible in the program and moving receives as far back as possible. Preliminary results
of the C* compiler for the nCUBE are fairly good. For example, in a parallel Gaussian
elimination program, the translated code ran 30% slower than the hand coded version.

Further results of this compilation have been discussed in [HQL+91]. This paper
describes measured speedups versus the number of processors on, among other machines,
an Intel IPSC/2. All times are compared to the best sequential time on a single node
of the processor. Although this doesn't compare the speed of hand coded programs to
that of what the C* compiler can do, it does illustrate how well SIMD programs caln
be executed, excluding communication. The results range from a low of roughly 50%
efficiency for numerical integration, 80% for the Gauss-Jordan algorithm, and a high of

98% for computing primes. Typical results were in the 70-80% range. These results
are good and indicate that the SIMD model is viable for most programs. Where the
user needs better efficiency, a more explicit model giving the user more control over the
machine, such as SPMD, can be used.

The contraction of an SPMD composite procedure is dependent on whether it contains
communications or not. If there is no communication then the contraction is simply a
matter of adding a for loop around the body of the procedure. Detecting communication
is simply a matter of looking for what type of variables are read or written. If the variables
are all of type private then there will be no communication. Alternatively, if remote or
buffered remote variables are declared and used to generate remote communications then
the compiler must generate code that preserves the order implied by the communication.

SPMD procedures that use buffered remote variables could be implemented using
light-weight processes, or threads (see e.g. [EZ91]). However, it should be possible for
the compiler to generate code that simulates threads. Such code would not be interrupt
driven and would probably be more efficient than a general purpose threads package.
This is possible because the compiler can generate code specifically for a given composite
procedure while a run time system must handle the most general case.

The general methodology used in the translation of an SPMD procedure with commu-
nications as follows. The translated program is broken into a sequence of statements of
reentrant blocks of code. The blocks are delimited by reads to buffered variables as these
are the only times that a process can block. Variables that are declared to be buffered
remote in the Dino program will consist of a list of values that have been buffered but
have not been read. In the case where virtual processes have blocked waiting for a value.
this type of variable will point to a list of virtual processors that have blocked reading
the variable. A C switch statement is used to simulate each block of code. Each case
statement represents one block of code. At the end of each block, a virtual process will
either block on a remote read and stop executing, or it will continue to the next block. A

16

composite proco [N:id]
{
float buff x[N] map Elemento;
float q;

SI;
x[fo] = id;
S2;
q = x[go);
S3;
}

Figure 5. A SPMD composite procedure with buffered communications

while loop around the switch statement cycles until all of the blocks for all of the virtual
processors have completed executing. In order to generate blocks that are reentrant the
compiler must generate variables for any values that will be used in more than one block
and would normally be stored on the processor stack. Thus, a context switch is little
more than changing an index that describes which virtual processor is being executed.
The simulation of SPMD virtual processors in this manner should be more efficient than
using a general purpose threads package.

To illustrate this approach, Figure 5 is a SPMD composite procedure that contains
three statements separated by a remote write and a remote read. A possible trans-
lation of this example that could be performed by a compiler is given in Figure 6. In
the translated program some of the declarations and expressions have been replaced by
comments for clarity. In this example, the N virtual processors are contracted onto a
single physical processor. The more general situation, where the virtual machine is con-
tracted onto two or more real processors, is not shown because the example would be
more complicated without adding much to the basic ideas. The main difference would
be that communications between virtual processors is slightly different.

In the translated program the buffered remote variable x is translated into a struct of
type x-buff that is a list of values or blocked virtual processes. The state of each virtual
processor is contained in the array proc-vp. This includes the block of code that is to be
executed next, state, and the value of the remote read. One additional data structure,
ready.que, that is required is the queue of ready virtual processes. This is similar to the
blocked queue associated with each buffered variable.

The code in Figure 5 is broken into two blocks when translated. These include
everything up to and including the read to x[g(], and everything after that. In this
case the value of the remote read is the only value that needs to be explicitly stored.
This value is stored in x-tval. In this example, each virtual process starts off executing
the first block. In the first block, a remote write buffers the value in the buffer associated
with xlf 0]. This is done in write-x and is not shown here. After the write, a virtual
processor executes S2 and then attempts to read x[go]. If no value exists then the

17

struct x-buff{
/*contains list of buffered values*/
/*or a list of blocked vps*/
};

struct proc-state{
int state;

struct proc.next *next; /*used to keep vps in ques*/
float x.tval[id]; /*values associated with remote read for each vp*/
I

proco{
struct x-buff x[N];
float q[N];
struct proc-state proc-vp[N] ;
struct proc.state *ready-que;

initialize-procstateo;
/*initialize the status of each virtual process
and place in the ready queue*/

while (/*ready queue not empty*/){
id = /*id of first element in ready queue*/
switch(proc-vp [id] state) {
case 1:
Si;
write-x (f (), id) ;

/*put id into the buffer for x[f()] or
put a blocked vp in ready queue*/

S2;
proc.vp[id].x-tval = read.x(go, id);
/*if a value is buffered for x[go] take it and continue

else block this vp on x[go]*/
case 2:
q[id] = proc.vp[id] .x-tval;
$3;
remove-vp(id); /*remove this vp from the ready queue*/
}

Figure 6. Translation of a SPMD procedure with buffered communications

18

virtual processor is blocked on that value. This is done in readx. As soon as a write
is made to the variable that this process is blocking on, that value is assigned to the
temporary variable x-tval associated with the blocked process and the process is placed
back in the ready queue. After successfully reading the value, it is assigned to the local
value of q and S3 is then executed before the virtual processor is removed from the ready
queue. Execution ends when the ready queue is empty.

Another case in which SPMD procedures are contracted is the chaotic SPMD model,
or where SPMD procedures use remote variables as opposed to buffered emote variables.
The compiler should make some attempt to keep this "fair" when executing the composite
procedure on a single real processor. The compiler could execute all of the code for each
virtual processor before executing the code of any other processor but this would probably
not have the intended effect. A better method would consist of breaking the code into
blocks, as if the remote variables were buffered remote, and always changing to another
virtual process at each remote read.

The implementation of constructs that generate communication is another critical
element in the compilation of Dino2 programs. The two types of constructs that create
communication are the remapping of data between modules, and implementing remote
reads and writes of distributed data. The remapping of data between modules is imple-
mented similarly to remote writes, and could be handled by the compiler in a similar
manner. Therefore we don't discuss it separately, since remote writes are discussed be-
low. It would probably be advantageous to also have special libraries to handle common
remappings very efficiently.

The two types of variables that can create communications are remote and buffered
remote variables. Since the communication semantics are an explicit part of the language,
it is fairly easy for the compiler to determine where in the program communication will
be generated. In the SPMD model, it is always assumed that reading or writing a remote
or buffered remote variable will always generate communication. In the SIMD model,
optimization are used to try to avoid putting in calls for communication where it is not
needed. These optimizations are well understood, see e.g. [HQL+91] or [HKT91].

The primary concern in implementing these variables is the minimization of message
startup times, or latency. Message latency has both a hardware and software compo-
nent. The hardware component is decreasing with newer machines. As an example, the
iPSC/860 has a hardware latency of roughly 25pts and the Intel Paragon will have a
roughly lps hardware latency [RS92]. The software latency, when based on messages,
is roughly in the range ot" 30-100js. This large time is dependent on the very general
nature of the library underlying the message interface. In the general case, these libraries
must handle messages of any length arriving at any time. There is a large opportunity to
greatly reduce the software latency by taking advantage of knowledge about how coin-
munication is used in a program. For communication intensive programs, it is quite
reasonable for a compiler to be able to generate communication that runs faster than if
the code were hand coded using messages. Furthermore, as the latency is reduced, the
need to aggregate messages will become less important.

One technique for generating efficient communications would be to use a system sim-
ilar to Active Messages [vECGS92]. An active message is essentially an asynchronous
remote procedure call (RPC) and consists of a procedure id and parameters to the proce-
dure. The RPC mechanism is much more efficient than a message based system because

19

the system does not handle any low level details of handling messages such as buffering
or type checking. Instead, all the system does is invoke the correct procedure and let
the procedure handle what needs to be done. In this manner, only the services that are
required are implemented and used. On the CM5, the use of active messages has reduced
the message latency from roughly 70us to less than 5As.

In this context, active messages can be used to generate remote reads and writes in a
fairly obvious manner. There are RPCs corresponding to both remote reads and writes.
Buffered variables can be implemented with a buffer associated with each variable. This
will provide faster access than having one large buffer consisting of tagged messages that
must be interpreted for each access.

The final aspect of compilation that is of interest is the placement of virtual processors
onto the target machine. This mapping is partially specified by the programmer and can
be either static or dynamic. In the static case it is assumed that each virtual processor in
a composite procedure takes the same amount of time to execute. If this is not an appro-
priate model than the programmer should use a dynamic mapping or must use an explicit
technique to do the mapping. The mapping of static composite procedures is based on a
simple set of rules and a static analysis of the program. Each composite procedure call
divides the number of virtual processors by the number of available processors and then
maps the composite procedure based on the mapping function specified. This is done so
that adjacent virtual processors in the virtual processor data structure are on the same
physical processor as often as possible, and generally are on adjacent physical processors
otherwise. Techniques for accomplishing this for common structures are well-known and
are similar to blocking and distributing data arrays onto arrays of virtual processors. It
is important that the mapping does not change throughout the execution of the proce-
dure. By doing this, it is guaranteed that the distributed data will not be moved and
communication can always be sent directly to the correct processor. Furthermore, in the
cases where there does not need to be any communication for remapping of parameters
(the actual and formal parameters have the same type of mapping) there does not need
to be any communication generated. In this case a composite procedure call can be
implemented with a simple procedure call.

The second type of mapping, a dynamic one, could be supported using either a
centralized or distributed task allocation scheme such as that found in [HL86] or [LK86].
This ability to dynamically schedule tasks is similar to self scheduled loops in [.Jor87].
A difference is that communication between processors is only allowed, in the form of
parameters, at the start and end of the composite procedure call. This is done because of
the difficulties in implementing communications in an environment where the placement
of virtual processors is not known until they are executed. It would be difficult to
implement communications because the location of a variable would be hard to find
without going back through the mechanism that distributed the tasks.

7 Conclusion. The Dino2 language provides several new features for writing large,
modular parallel programs. These include : 1) the provision of two synchronization
models, SIMD and SPMD, that can be used in conjunction with parallel computation
modules; 2) the ability to combine SIMD modules, SPMD modules, and normal C pro-
cedures using nested and phased parallelism to obtain complex parallel programs; and 3)
the provision of communication types for distributed variables that define the commut-

20

nication semantics associated with reads and writes to these variables. These features
provide the user with a flexible and expressive parallel programming language that still
should be easy to use and result in efficient code. By modularizing the degree of par-
allelism, the synchronization model, and the communications, programs can be written
using a wide range of techniques that are not possible to combine in other languages
without introducing unmanageable complexity into some portion of the code. This flex-
ibility to combine different parallel algorithm paradigms will be needed to write parallel
programs for many large, complex scientific computations. The modularity should also
help in writing large programs because parallel modules can be written independently.
Finally, the characteristics of the modules have been designed to permit efficient execu-
tion. Many implementation considerations associated with the language are discussed in
[Ros9l], but a full implementation of the language has not yet been performed.

21

References

[APT90] F. Andre, .J. Pazat, and H. Thomas. Pandore: A system to manage data
distribution. In Proceedings of ACM ICS, Jun. 1990.

[CMZ92] B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran.
Scientific Programming, 1(1):31-50, Aug. 1992.

[EZ91] D. Eager and J. Zahorjan. Chores: Enhanced run-time support for shared-
memory parallel computing. Technical Report 91-08-05, University of Wash-
ington, 1991.

[FHK+90] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and
M. Wu. FortranD language specification. Technical Report CRPC-TR90079,
Dept. of Computer Science, Rice University, 1990.

[GHDN90] W. Griswold, G. Harrison, and L. Snyder D. Notkin. Scalable abstractions
for parallel programming. In Proceedings of the Fifth Distributed Memory
Computing Conference, Apr 1990.

[HJW87] L. Hamey and I-Chen Wu J. Webb. Apply, A Programming Language for
Louw-Level Vision on Diverse Parallel Architectures. Kluwer Academic Pub-
lishers, 1987.

[HKT91] S. Hiranadani, K. Kennedy, and C. Tseng. Compiler optimizations for For-
tran D on MIMD distributed-memory machines. In Proceedings Supercom-
puting '91, pages 86-100, Nov. 91.

[HL86] C.H. Hsu and J. Liu. Dynamic load balancing algorithms in homogeneous
distributed systems. In Proceedings of the 6th International conference on
Distributed Computing Systems, August 1986.

[HQL+91] P. Hatcher, M. Quinn, A. Lapadula, B. Seevers, R. Anderson, and R. .Jones.
Data-parallel programming on MIMD computers. IEEE Transactions oil
Parallel and Distributed Systems, 3(2), Jul. 1991.

[Jor87] H. Jordan. The Force, chapter 16. MIT Press, 1987.

[KMR90] C. Koelbel, P. Mehrotra, and J. Van Rosendale. Supporting shared data
structures on distributed memory architecture. In Conf. on Principlcs and
Practice of Parallel Processing, Mar. 1990.

[Koe93] C. Koelbel. Hpff. Technical report, Rice University, 1993. via anonymous
ftp from titan.cs.rice.edu.

[LG9L] J. K. Lee and D. Gannon. Object oriented parallel programming: Experi-
ments and results. In Supercomputing '91, Nov. 1991.

[Lit90] R. J. Littlefield. Efficient iteration in data-parallel programs with irregular
and dynamically distributed data structures. Technical Report 90-02-06,
Department of Computer Science, University of Washington, 1990.

22

[LK86] F.C.H. Lin and R.M. Keller. Gradient model: A demand-driven load balanc-
ing scheme. In Proceedings of the 6th International conference on Distributed
Computing Systems, August 1986.

[NSD90] M. A. Nichols, H. J. Siegel, and H. G. Dietz. Data management and control-
flow constructs in a simed/spind parallel language/compiler. In 1990 Third
Symposium on the Frontiers of Massively Parallel Computation, pages 397-
406, 1990.

[OS92] D. Olander and R. B. Schnabel. Preliminary experience in developing a
parallel thin-layer Navier Stokes code and implications for parallel language
design. In Proc. Scalable High Performance Computing Conference SHPCC-
92, pages 276-283, 1992.

[PTH91] M. Philippsen, W. Tichy, and C. Herter. Modula-2* and its compilation. In
Proceedings of the First International Conference of the Austrian Center for
Parallel Computation, Sep. 1991.

[QH90] M. .J. Quinn and P. J. Hatcher. Data parallel programming on multicomput-
ers. IEEE Software, pages 69-76, 1990.

[QHJ87] M. J. Quinn, P. J. Hatcher, and K. C. Jourdenais. Compiling C* programs for
a hypercube multicomputer. In Proceedings of A CI/SIGPLIN PPEALS,
Parallel Programming: Experience w ith Applications, Languages, and Sys-
tems, pages 57-65, Jul. 1987.

[RJ87] .1. R. Rose and G. L. Steele Jr. C*: An extended C language for data parallel
programming. Technical Report PL-5, Thinking Machines Corp., 1987.

[Ros9l1 M. Rosing. Efficient Language Constructs for Complex Parallelism on Dis-
tributed Memory Multiprocessors. PhD thesis, University of Colorado, Boul-
der, Aug. 1991.

[RS87] M. Rosing and R. B. Schnabel. An overview of dino - a new language for nu-
merical computation on distributed memory multiprocessors. In Proceedings
of the Third SIAM Conference on Parallel Processing for Scientific Comput-
ing, pages 312-316, 1987.

[RS92] M. Rosing and J. Saltz. Low latency messages on distributed memory mul-
tiprocessors. Technical Report 92-25, Institue for Computer Applications in
Science and Engineering, 1992.

[RSW91a] M. Rosing, R. B. Schnabei, and R. P. Weaver. Scientific programming lan-
guages for distributed memory multiprocessors: Paradigms and research is-
sues. Technical Report. CI-CS-537-91, Univ. of Colorado, Dept. of Computer
Science, 1991.

[RSW91b] M. Rosing, R. B. Schnabel, and R. P. Weaver. The DINO parallel program-
miing language. Journal of Parallel and Distrihutcd Coomputing. 13(9):30-42,
Sep 1991.

23

[SSK+81] H. J. Siegel, L. J. Siegel, F. C. Kenmnmerer, Jr P. T. Mueller, .Jr. H. E. Sinal-
ley, and S. D. Smith. Pý -m: a partitionable simed/mimnd system for image
processing and pattern recognition. IEEE Transactions on Computcrs, C-
30('2):934-947, Dec 1981.

[Tse89] Ping-Sheng Tseng. A Parallelizing Compiler for Distributed M(mory Parallel
Computers. PhD thesis, Carnegie Mellon, May 1989.

[vECGS92] T. vor Eicken, D. E. Culler, S.C. Goldstein, and K. E. Schauser. Active
messages: A mechanism for integrated communications and computation.
In Proceedings or the 19th Annual international Symposium on Computer
Architectare, pages 256-266, Gold Coast, Australia, May 1992.

[ZBS] X. Zhang, R. H. Byrd, and R. B. Schnabel. Parallel methods for solving
nonlinear block bordered systems of equations. SIAM Journal on Scientific
and Statistical Computing, 13(4):841-859.

24

SForm Approved

REPORT DOCUMENTATION PAGE OMBNo 0704-0188

Public reocrting burrdn for th%0 41t(] On of n•'•O ra! Om - 5t•mate• to avelaPq 1 our De le s Cls dn the time for reeenq nistruttioris ,erc•-n Car1tn data rouJrC

gathering and m#,hnta&rrng the data neede, arnd c0onroeft~q and r I."nq tre 31lec ion 0' -r or-at*On Senrd comments re aring Ith.S ourden estimate or an. other aW cl of tihs
Cosfection of information. ,n(luding suggestion% -or reducing tý, ourocer to A'ashngt(on] HeaC6 uadr t ser uces. Drecrorate for ntormation Ooerators'r and Rebports. lIS Jefferson
O.•s High. aw. Suate 1204 Aringt(n. i A 22202-4302 and to the O ,.ie Of Manage•ent and Buqge. PaoerwOru AeouctiOn Project (0704-0. 58). Wash.ngton. DC 200 3

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I June 1993 Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

FLEXIBLE LANGUAGE CONSTRUCTS FOR LARGE PARALLEL PROGRAMS C NAS1-18605
C NASI-19480

6. AUTHOR(S)

Matthew Rosing
Robert Schnabel WU 505-90-52-01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION

Institute for Computer Applications in Science REPORT NUMBER

and Engineering ICASE Report No. 93-29
Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

National Aeronautics and Space Administration AGENCY REPORT NUMBER

Langley Research Center NASA CR-191478
Hampton, VA 23681-0001 ICASE Report No. 93-29

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card Submitted to Scientific
Final Report Programming

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 60, 61

13. ABSTRACT (Maximum 200 words) The goal of the research described in this paper is to devel-
op flexible language constructs for writing large data parallel numerical programs
for distributed memory (MIMD) multiprocessors. Previously, several models have been
developed to support synchronization and communication. Models for global synchroni-
zation include SIRD (Single Instruction Multiple Data), SPMD (Single Program Multiple
Data), and sequential programs annotated with data distribution statements. The two
primary models for communication include implicit communication based on shared
memory and explicit communication based on messages. None of these models by them-
selves seem sufficient to permit Lhe natural and efficient expression of the variety
of algorithms that occur in large scientific computations. In this paper, we give
an overview of a new language that combines many of these programming models in a
clean manner. This is done in a modular fashion such that different models can be
combined to support large programs. Within a module, the selection of a model de-
pends on the algorithm and its efficiency requirements. In this paper, we give an
overview of the language and discuss some of the critical implementation details.

14. SUBJECT TERMS 15. NUMBER OF PAGES

parallel computers, distributed memory, languages 26
16. PRICE CODE

A03
17. SECURITY CLASSIFICATION 10. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified

NSN 7540-01-260-5500 Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std Z1-fl.

*U.S. GOVEINMENT PRINTING OFirCE: W1" - 7Ul-G 564, 22 2961-02

